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1 Introduction

This document describes the MFTools component of the MFChombo distribution. This
infrastructure is based upon the Chombo infrastructure developed by the Applied Numeri-
cal Algorithms Group at Lawrence Berkeley National Laboratory [1], and also draws heavily
on the EBChombo software which extends Chombo for the case of embedded boundaries
in a Cartesian mesh. MFTools is meant to be an infrastructure for Cartesian grid multifluid
(MF) algorithms. This software aims to provide a relatively compact set of abstractions
in which Cartesian grid multifluid algorithms can be expressed and implemented. The
particular design we propose here is motivated by the following observations. First, the
dependent variables in a finite difference method are represented as arrays defined on
subsets of an index space. Second, the transformations on arrays can be expressed as
combinations of pointwise operations on the arrays, and of sums over nearby points of
arrays, i.e., stencil operations. For standard finite difference methods on rectangular grids,
the index space is the d-dimensional rectangular lattice of d-tuples of integers, where d is
the spatial dimension of the problem. For multigrid or AMR methods, the index space is
the hierarchy of d-dimensional rectangular lattices, where the successive members of the
hierarchy are related to one another by coarsening and refinement operations. In both
of these cases, the stencil operations can be expressed formally as a loop over stencil
locations. In the AMR case, both the stencil locations and the locations where the stencil
operations are applied are computed using a set calculus on the index space. If one fully
exploits this picture to derive a set of abstractions for expressing these algorithms, it leads
to a very concise implementation of the algorithms in these two domains.
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The above characterization of finite difference methods holds for the MF algorithms
as well, with the critical difference that the index space is no longer a rectangular lattice,
but a more complicated object. In the case of a non-hierarchical grid representation,
the index space is a combination of a rectangular lattice (the Cartesian grid part) and a
graph representing the irregular cell fragments that abut the irregular boundary. For a
hierarchical method, we have one such index space for each level of refinement, related to
the others by coarsening and refinement operations. In addition, we want to support the
overall implementation strategy that the bulk of the calculations (corresponding to data
defined on the rectangular lattice) are performed using rectangular array representations,
thus restricting the irregular array accesses and computations to a set of codimension
one. Finally, we wish to appropriately integrate AMR implementation strategies for block-
structured refinement with the MF algorithms.

Because of the similarities between our multifluid approach and the embedded bound-
ary approach for complex geometries used in the design of the EBChombo software, we will
borrow heavily from the design and conceptual framework used for EBChombo. For more
information regarding the EBChombo framework, see the EBChombo design documents.

2 Overview of Multifluid Description

Cartesian grids with embedded multifluid boundaries are useful to describe volume-of-fluid
representations of irregular and non-static multifluid interfaces. In this description, geom-
etry is represented by volumes and apertures. The areas / volumes, expressed in dimen-
sionless terms are volume fractions κi = |Vi|h−d, face apertures αi+ 1
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i |h−(d−1). We assume that we can compute estimates
of these dimensionless quantities which are accurate to O(h2). See Figure 1 for an illus-
tration. In the figure, the grey area represents one phase and the white region the second
phase; the arrows represent fluxes for the “white” phase, including the flux across the
multifluid interface. A conservative, “finite volume” discretization of a flux divergence
∇ · ~F for the “white” region is of the form:
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This is useful for many important partial differential equations. Consider Poisson’s
equation with Neumann boundary conditions

∇ · ~F = ∆φ = ρ on Ω, (2)

∂φ

∂n
= 0 on ∂Ω.
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Figure 1: Multifluid cell. The grey area represents one phase, while the white region is
a second phase in the same Cartesian cell. Arrows indicate fluxes for the white phase
(including one across the white/grey multifluid interface)

The volume-of fluid description reduces the problem to finding sufficiently accurate gradi-
ents at the apertures. See Johansen and Colella [3] for a complete description of solving
Poisson’s equation with embedded boundaries; the approach we will take for multifluid
interfaces will be similar. Hyperbolic conservation laws can be solved using similar di-
vergence examples. See Modiano and Colella [4] for such an algorithm. Gueyffier, et
al. [2] use a similar approach for their volume-of-fluid application. The only geometric
information required for the algorithms described above are:

• Volume fractions

• Area fractions

• Centers of volume, area.

The problem with this description of the geometry is it can create multiply-valued
cells and non-rectangular connectivity, as in Figure 2. The shaded region represents the
area in one phase while the unshaded region represents a second phase. The solid lines
represent the connectivity of the discrete domain for the shaded phase, while the dashed
lines illustrate the connectivity for the unshaded phase. In addition, the two phases will
generally be linked across the the multifluid interface through interface boundary condi-
tions. Figure 3 illustrates the additional connectivity arising through a simple interface
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boundary condition. The software infrastructure must support abstractions which can
express this complexity.

Our solution to this abstraction problem is to define the multifluid grid as a graph.
The irregular part of the index space for a phase a can be represented by a graph Ga =
{N, E}a , where N is the set of all nodes in the graph, and E the set of all edges of the
graph connecting various pairs of nodes. Geometrically, the nodes correspond to irregular
control volumes (cell fragments) cut out by the intersection of Ωa with the rectangular
mesh, and the edges correspond to the parts of cell faces that abut a pair of irregular cell
fragments. Interface connectivity between two phases a and b is defined by the set Iab

which determines the connectivity between Na and N b in much the same way that Ea

determines the connectivity between the nodes in Na .
For each phase, the remaining parts of space are indexed using elements of Zd, or are

contained in another phase and not indexed into at all. However, it is possible to think
of the entire index space (both the regular and irregular parts) as a graph: in the regular
part of the index space, the nodes are just elements of Zd, and the edges are the cell
faces that separate pair of successive cells along the coordinate directions. If we used this
representation for the entire calculation, the method would correspond to a unstructured
grid method. We will use this specification of the entire index space as a convenient
uniform interface to both the structured and unstructured parts of the index space.

We discretize a complex problem domain as a background Cartesian grid with an
embedded boundary representing the irregular domain region. We recognize three types
of grid cells or faces: a cell or face that the multifluid interface intersects is irregular.
A cell or face in the irregular problem domain which the boundary does not intersect is
regular. A cell or face outside the problem domain for the given phase a is covered. In
practice, we will not allow a multifluid interface to coincide with a cell face; instead the
interface will be considered to be a small distance ε from the interface, and will be entirely
on one side of the interface. This will help simplify connectivity issues.

An irregular volume of fluid (VoF) is formed from the intersection of a grid cell and
the irregular phase domain Ωa . We represent the segment of the multifluid interface
as a single flat segment. Quantities located at the multifluid boundary are given the
superscript B.

A VoF has a volume κhDim, where κ is its volume fraction. A face has an
area `h(Dim−1), where ` is its area fraction. The polygonal representation is reconstructed
from the volume and area fractions under the assumption that the VoF has one of the
shapes above. Since the boundary segments are reconstructed solely from data local to
the cell, it will typically not be continuous with the boundary segment in neighboring cells.
We also derive the normal to the multifluid face n̂ and the area of that face `Bh(Dim−1).

2.1 Time Dependent Interface Geometries

Because interfaces move as a function of time, MFChombo also has the concept of time as
an integral part of the geometry. As the geometry changes, the graph and its connectivity
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Figure 2: Example of a possible multifluid connectivity graph. The shaded region is one
phase, while the unshaded region is a second phase. The dashed lines represent the graph
connectivity of the unshaded phase, while the solid lines represent the connectivity of the
shaded phase. For clarity, connectivity across the multifluid interface is ignored in this
depiction.
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Figure 3: Multifluid example from Figure 2, illustrating connectivity between phases across
the multifluid interface.

will change over time as well. For example, Figure 4(a) illustrates a possible evolution of
a multiphase interface and the changing connectivity graph of the unshaded phase. Note
that the two VoFs at the old time in the rear left cell merge, while the VoF in the rear
right cell splits as the geometry of the interface evolves. The changing geometry means
that there is a connectivity graph in time (illustrated by the dark solid lines) as well as
space (illustrated by the dashed lines at each time level). The additional connectivity
in time and space leads to the concept of a data graph, which is the simplest possible
connectivity graph based on the aggregate old- and new-time connectivity. For example,
the data graph for the time-dependent geometry shown in Figure 4(a) is shown in Figure
4(b). The key feature of the data connectivity graph is that VoFs in a single cell which
are linked by time connections in the connection graph (i.e. cases where a VoF either
splits into multiple VoFs or merges with another VoF during a timestep) are represented
by one node on the data graph. Topologically, the data graph is identical to the new-time
graph except in locations where a single old-time VoF has been split into more than one
node in the new-time graph; in this case, the multiple child nodes in the new time graph
are represented as a single node in the data graph. In general, a user will access graph
connectivity information through the data graph; old- and new-time geometric information
is then accessed through connections with the data graph. Solution updates are computed
using connectivities based on the data graph, and when data storage is allocated, it is
based on the data graph, rather than the old- or new-time graphs. This will simplify
time-dependent computations.
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Figure 4: Evolution of a connectivity graph in time.In (a), dashed lines illustrate connnec-
tivity of the unshaded phase at a single time level, while solid lines illustrate connectivity
of VoFs between time levels. (b) Data graph for the time-dependent geometry shown in
(a)
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Concept Chombo MFChombo

ZD —- MFIndexSpace
point IntVect VoF
region Box EBISBox

Union of Rectangles BoxLayout EBISLayout
Rectangular array BaseFab MFCellFAB

iterator over points BoxIterator VoFIterator, FaceIterator

Table 1: The concepts represented in Chombo and MFChombo.

3 Overview of API Design

The pieces of the graph of the discrete space are represented by the classes VolIndex

and FaceIndex, which are elements of the EBChombo software. VolIndex is an abstract
index into cell-centered locations corresponding to the nodes of the graph (VoFs). In
EBChombo, the FaceIndex class is an abstract index into edge-centered locations (con-
nections between VoFs). To handle the additional needs of multifluid computations, we
extend the VolIndex class to index into interphase graph connections between VoFs.
FaceIndex controls access to faces within the same phase.

The class MFIndexSpace is a container for geometric information at all levels of re-
finement. Each fluid phase is represented by data on an EBIndexSpace. EBIndexSpace
is the EBChombo class for representing embedded boundary applications (cut-cell tech-
nology). Each fluid phase has it’s own consistent EBIndexSpace.

The MFIndexSpace class also contains the interface to the functionality needed to
advance the interface in time. Because it is expected that the method of advancing the
multifluid interface in time will be dependent on the physics of the actual problem being
solved.

In general, the user only accesses the data graph through each phase’s EBISBox

descriptor.
In an AMR computation with refinement in time, different refinement levels will be

have different old and new times as the hierarchy of levels is advanced in time. Therefore,
except at the initial time when the MFIndexSpace is defined, time variables will depend
on the individual MFISLevels.

4 Data Structures for Graph Representation

4.1 Overview

The class VolIndex is an abstract index into cell-centered locations (VoFs) corresponding
to the nodes of the graph. The class FaceIndex is an abstract index into connections
between VoFs. It is characterized by the pair of VolIndexes that are connected by
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the FaceIndex. The possible range of values that can be taken on by a VolIndex

or a FaceIndex is determined by the index space containing the VolIndex. There are
multiple types of FaceIndexes, depending on the relationship between the VoFs connected
by the FaceIndex. The FaceIndex type is determined by an enumeration; there are
(SpaceDim + 1) types. The enumeration types are named:

enum FaceIndexType {xFace=0, yFace, (zFace,)}

FaceIndex types 0 through (SpaceDim− 1) are face-centered connections between
VoFs, and are identical to the EBChombo conception of FaceIndexes.

EBISBox represents a subset of the MFIndexSpace at a particular refinement and over
a particular box in the space at a particular time, for a single fluid phase.

4.2 Class MFIndexSpace

The entire time-dependent graph description of the geometry is represented in the class
MFIndexSpace, which stores the data graph, along with the graph connectivity and other
geometric information (volume fractions, area fractions, etc) at two time levels (told and
tnew) and the connectivity of the graph between these two times. The important member
functions of MFIndexSpace are as follows.

• void

define(const Box& a_domain,

const RealVect& a_origin,

const Real& a_dx,

const Vector<GeometryService*>& a_geoservers,

int a_nCellMax = -1,

int maxCoarsenings = -1);

Define data sizes. The a domain argument defines the domain of the MFInd-
exSpace at its finest resolution. The arguments a origin and a dx specify the
location of the zero vector in the index space and the grid spacing in each coordi-
nate direction at the finest resolution. The initialTime argument is the solution
time at which the initial geometry is defined. The a geoservers argument is
the service class which tells the MFIndexSpace how to build itself. It contains a
GeometryService description of each fluid pahse. See section 4.3 for a description
of the GeometryService interface class. Coarser resolutions of the MFIndexSpace
are also generated in the initialization process. The degree of coarsening is controled
by the optional argument maxCellCoarsenings

• void

fillEBISLayout(EBISLayout& a_ebis, int phase,

const DisjointBoxLayout& a_grids,

const Box& a_domain,
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const int & nghost) const;

Define an EBISBox for each box in the input layout a_grids grown by the input
ghost cells. The input a_domain defines the refinement level at which the layout
exists. If the refinement does not exist within the MFIndexSpace, a runtime error
occurs. The argument a_grids is the layout over which the data is distributed. If
every box does not lie within the input domain, a runtime error occurs. The nghost
argument defines the number of ghost cells in each coordinate direction.

• int numPhases() const

• int numLevels() const;

Return the number of levels of refinement represented in the MFIndexSpace

• int getLevel(const ProblemDomain& a_domain) const;

Return level index of domain. Return -1 if a_domain does not correspond to any
refinement of the MFIndexSpace.

A major modification to the Embedded Boundary Chombo code (EBCHOMBO) was
the ability to have multiple EBIndexSpace instances. We use this ability to model each
fluid phase as it’s own cut-cell AMR data representaion. The EBISBox interface privides
the needed extra functionality for users to access the additional inter-phase surface data.

Another critical extension of the EBIndexSpace was the ability to have multiple bound-
ary faces per volume-of-fluid. This can be finessed in a single phase embedded boundary
algorithm, but is essential for correct multi-phase dynamics.

4.3 Class GeometryService

The GeometryService class that MFIndexSpace uses for geometry generation. MFIndexSpace
builds an adaptive hierarchy of its geometry information. It queries the input GeometryService
with a two pass algorithm. First MFIndexSpace resolves which regions of the space
are wholly regular, which are wholly covered, and which contain irregular cells. Then
MFIndexSpace loops through the regions which contain irregular cells and sends these
regions (in the EBISBox form to the GeometryService to be filled.

In the multifluid context “covered” means the volume has no volume of the phase in
question. “regular” means the cell is entirely this fluid phase.

The interface of GeometryService is

• virtual bool isRegular(const Box& region, const ProblemDomain& domain,

const RealVect& origin, const Real& dx)=0;

virtual bool isCovered(const Box& region, const ProblemDomain& domain,

const RealVect& origin, const Real& dx)=0;
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Return true if every cell in the input region is regular or covered. Argument region
is the subset of the domain. The domain argument specifies the span of the solution
index space. The origin argument specifies the location of the lower-left corner
(the zero node) of the solution domain and the dx argument specifies the grid
spacing.

• virtual void fillEBISBox(EBISBox& ebisRegion,

const Box& region,

const ProblemDomain& domain,

const RealVect& origin,

const Real& dx)=0;

Fill the geometry of ebisRegion. The region argument specifies the subset of
the domain over which the EBISBox will live. The domain argument specifies the
span of the solution index space. The origin argument specifies the location of
the lower-left corner (the zero node) of the solution domain and the dx argument
specifies the grid spacing. MFIndexSpace checks that ebisRegion covers the
region on output. In this function, the GeometryService must correctly fill all
of the internal data in the EBISBox class (we enumerate this data in section 4.4.
This function is only called if isRegular and isCovered return false for the input
region. The steps for filling this data are as follows:

– Set ebisRegion.m_type=EBISBoxImplem::HasIrregular.

– Set ebisRegion.m_box=region.

– Resize and set ebisRegion.m_typeID. On covered cells you set this to -2,
on regular cells, you set it to -1 and on irregular cells you set it to 0 or higher,
corresponding to the cell’s index into ebisRegion.irregVols.

– Set the volumes in ebisRegion.m_irregVols. At each cell, create a vector
of volumes whose length is the number of VoFs in the cell. The internal
class Volume contains all the auxiliary VoF information which is not absolutely
necessary for indexing. For each Volume vol the GeometryService must set

∗ vol.m_index, the VolIndex of the volume.

∗ m_volFrac, the volume fraction of the volume.

∗ m_loFaces, the low faces of the volume in each direction.

∗ m_hiFaces, the high faces of the volume in each direction.

∗ m_loAreaFrac, the low area fractions of the volume in each direction.

∗ m_hiAreaFrac, the high area fractions

For a GeometryService to fill an EBISBox, it must extract the internal data of the
EBISBox and fill it. The internal data of EBISBox is described in section 4.4.
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GeometryService is a friend class to EBISBox and has access to its internal data.
Not all compilers respect that classes which derive from friend classes are also friends.
Therefore the internal data

should be accessed through these GeometryService functions which are designed to
get around this compiler feature:

• Box& getEBISBoxRegion(EBISBox& a_mfisBox) const

This returns a reference to the region that the EBISBox covers. This needs to be
set in all cases.

• EBISBoxImplem::TAG& getEBISBoxEnum(EBISBox& a_mfisBox) const

This returns a reference to the tag that marks whether the EBISBox is all regular,
all covered, or has irregular cells. This needs to be set in all cases.

• Vector<Vector<Vol> >& getEBISBoxIrregVols(EBISBox& a_mfisBox) const

This returns the list of irregular VoF representations. This must only be filled if the
this EBISBox is tagged to have irregular cells.

• BaseFab<int>& getEBISBoxTypeID(EBISBox& a_mfisBox) const

Return the flags for each cell in the EBISBox. This must only be filled if the this
EBISBox is tagged to have irregular cells. In this case, covered cells are to be tagged
with -2, regular cells are to be tagged with -1 and irregular VoFs are tagged with
the index into the vector of irregular volumes which corresponds to this particular
VoF.

• IntVectSet& getEBISBoxMultiCells(EBISBox& a_mfisBox) const

Returns a reference to the multiply-valued cells in the EBISBox. This must only be
filled if the this EBISBox is tagged to have irregular cells.

• IntVectSet& getEBISBoxIrregCells(EBISBox& a_mfisBox) const

Return a reference to the set of irregular cells in the EBISBox. This must only be
filled if the this EBISBox is tagged to have irregular cells.
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4.4 Class EBISBox

EBISBox

represents the geometric information of the domain at a given refinement and time
instance within the boundaries of a particular box. EBISBox can only be accessed by
using the the EBISLayout interface. Like the MFIndexSpace and EBISLayout classes,
EBISBox has two different time levels, told and tnew, and contains the geometries at each
time level, along with the data graph based on these geometries. Geometric information
is also organized by phase. In general, the old- and new-time graphs are hidden from
the user, who instead accesses the data graph for a given EBISBox. Old and new time
geometric information is then accessed through its connections with the data graph.

The important public member functions of EBISBox are as follows:

• IntVectSet getMultiCells(const Box& subbox, int phase) const;

Returns a list all multi-valued cells at the given level of refinement within the input
Box subbox in the data graph for the phase denoted by phase.

• IntVectSet getIrregIVS(const Box& boxin, int phase) const;

Returns the irregular cells of the EBISBox data graph that are within the input
subbox for the given phase. For the purposes of the data graph, any cell which is
irregular in the old- or new-time graphs is considered irregular.

• Vector<VolIndex> getVoFs(const IntVect& iv, int phase);

Gets all the VoFs in the data graph in a particular cell for the given phase.

• int numVoFs(const IntVect& iv, int phase) const;

Returns the number of VoFs in the data graph in a particular cell for the given
phase.

• Vector<FaceIndex> getFaces(const VolIndex& vof,

FaceIndexType faceType,

Side::LoHiSide sd);

Gets all faces in the data graph of the type denoted by faceType for the given VoF
and phase. If the faceType is either xFace, yFace, or zFace, the Side sd denotes
whether it is a high or low side face in the direction given.

• bool isRegular(const IntVect& iv) const;

Returns true if the input cell is a regular VoF in the data graph

• bool isRegular(const Box& box) const;

Returns true if every cell in the input Box is a regular VoF
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• bool isCovered(const IntVect& iv) const;

Returns true if the input cell is a covered cell in the data graph for this phase. A
cell is considered to be “covered” for the purposes of the data graph if there is no
fluid of this phase in this cell.

• bool isCovered(const Box& box) const;

Returns true if every cell in the input box is a covered cell in the data graph in this
phase.

• bool isIrregular(const IntVect& iv, int phase) const;

Returns true if the input cell is an irregular cell in the data graph for the given
phase.

• int numFaces(const VolIndex& vofin,

FaceIndexType faceType,

Side::LoHiSide sd) const;

Returns the number of faces the input VoF has in the given type and side (if
faceType is xFace, yFace, or zFace). Returns zero if the VoF has no faces of
the given type.

• Real volFrac(const VolIndex& vofin) const;

Returns the volume fraction of the input VoF.

• bool isConnected(const VolIndex& vof1,

const VolIndex& vof2) const;

Return true if the two input VoFs are connected by a face (connected by a
FaceIndex of type xFace, yFace, or zFace).

• bool isAllCovered();

Return true if every cell in the EBISBox is covered (not in the given phase) in the
data graph.

• bool isAllRegular();

Return true if every cell in the EBISBox is regular (in the domain of the given phase)
in the data graph.

• RealVect normal(const VolIndex& vofin, int phase) const;

Returns the normal to the fluid interface with respect to the opposing indicated
phase at the input VoF. Return the zero vector if the answer is undefined (for
example, if the VoF is regular or covered).
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• RealVect centroid(const VolIndex& vofin) const;

Returns the centroid of the VoF. Returns the zero vector if the VoF is regular or
covered. The answer is given as a normalized (by grid spacing) offset from the
center of the cell (all numbers range from -0.5 to 0.5).

• RealVect centroid(const FaceIndex& facein) const;

Return centroid of input face as a RealVect whose component in the uninteresting
direction normal to the face is undefined. In the (one or two) interesting directions
returns the centroid of the input VoF. Return the zero vector if the face is covered
or regular. The answer is given as a normalized (by grid spacing) offset from the
center of the cell face (all numbers range from -0.5 to 0.5).

• RealVect bndryCentroid(const VolIndex& a_vof, int phase) const;

Returns the centroid of the area of the fluid interface with respect to the opposing
indicated phase at the input VoF. Return the zero vector if the answer is undefined
(for example, if the VoF is regular or covered).

• Real bndryArea(const VolIndex& a_vof, int phase) const;

Returns the surface area of the fluid interface with respect to the opposing indicated
phase at the input VoF. Returns zero if the answer is undefined (for example, if the
VoF is regular or covered, or this phase is not adjacent).

• int numFacePhase(const VolIndex& a_vof) const ;

returns the number of distinct inter-phase faces for this volume of fluid.

• int facePhase(const VolIndex& a_vof, int face) const ;

returns the ID of the fluid phase for a specified VoF inter-phase face.

• Vector<VolIndex> refine(const VolIndex& coarseVoF) const;

Returns the corresponding set of VoFs from the next finer EBISLevel (factor of two
refinement). The result is only defined if this EBISBox was defined by coarsening.

• VolIndex coarsen(const VolIndex& vofin);

Returns the corresponding VoF from the next coarser EBISLevel (same solution
location, different index space, factor of two refinement ratio).

• void copy(const Box& a_regionFrom, const Interval& Cd,

const Box& a_regionTo,

const EBISBox& a_source, const Interval& Cs);

Copy the information from a_source over box a_regionFrom, to the a_regionTo
box of the current EBISBox. The interval arguments are ignored. This function is
required by the LevelData template class.
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4.5 Class EBISLayout

EBISLayout is a collection of EBISBoxes distributed across processors and associ-
ated with a DisjointBoxLayout and a number of ghost cells. In a parallel context,
EBISLayout is the way the user can create parallel, distributed data. EBISLayouts are
null-constructed and are defined by sending them to the fillEBISLayout(...) func-
tion of MFIndexSpace. EBISLayout is constructed around a reference-counted pointer
of an EBISLayoutImplem object so copying EBISLayouts is inexpensive and follows the
reference-counted pointer semantic (changing the copied-to object changes the copied-
from object). Recall that one can coarsen and refine only by a factor of two using the
EBISBox class directly. Because EBISBox archives the information to do this, it is an inex-
pensive operation. Coarsening and refinement using larger factors of refinement must be
done through EBISLayout and it can be expensive, especially in terms of memory usage.
When one sets the maximum levels of refinement and coarsening, EBISLayout creates
mirrors of itself at all intermediate levels of refinement and holds those new EBISLayouts
as member data. Refinement and coarsening is done by threading through these interme-
diate levels. The important functions of EBISLayout follow.

• const EBISBox& operator[] (const DataIndex& a_datInd) const;

Access the EBISBox associated with the input DataIndex. Only constant access is
permitted.

• void setMaxRefinementRatio(const int& a_maxRefine);

Sets the maximum level of refinement that this EBISLayout will have to perform.
Creates and holds new EBISLayouts at intermediate levels of refinement. Default
is one (no refinement done).

• setMaxCoarseningRatio(const int& a_maxCoarsen);

Sets the maximum level of coarsening that this EBISLayout will have to perform.
Creates and holds new EBISLayouts at intermediate levels of coarsening. Default
is one (no coarsening done).

• VolIndex coarsen(const VolIndex& a_vof,

const int& a_ratio,

const DataIndex& a_datInd) const;

Returns the index of the VoF corresponding to coarsening the input VoF by the
input ratio. It is an error if the ratio is greater than the maximum coarsening ratio
or if the VoF does not exist at the input data index.

• Vector<VolIndex> refine(const VolIndex& a_vof,

const int& a_ratio,

const DataIndex& a_datInd) const;
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Returns the indices of the VoFs corresponding to refining the input VoF by the input
ratio. It is an error if the ratio is greater than the maximum refinement ratio or if
the VoF does not exist at the input data index.

• const BoxLayout& getLayout() const

Return the ghosted layout that underlies the EBISLayout

4.6 Class VolIndex

The class VolIndex is an abstract index into cell-centered locations which corresponds
to the nodes of the data graph. The types of VoF are listed below:

• Regular: VoF has unit volume fraction and has exactly 2*D Faces, each of unit area
fraction.

• Covered: VoF has zero volume fraction and no faces.

• Irregular: Any other valid VoF. These are VoFs which either intersect the multifluid
interface or border a covered cell.

• Invalid: The VoF is incompletely defined. The default when you create a VoF, and
used as the out-of-domain VoF of a boundary Face.

The class VolIndex contains the following important member functions:

• IntVect gridIndex() const Returns the IntVect of the VoF.

• int cellIndex() const Returns the cell identifier of the VoF.

4.7 Class FaceIndex

The class FaceIndex is an abstract index into connections between VoFs in the graph.
A FaceIndex exists between two VoFs and is defined by those VoFs. Each FaceIndex

has an associated type, given by the FaceIndexType enumeration in Section 4.1. Every
face referred to by a FaceIndex has an associated area fraction. Note that while a face-
centered FaceIndex can have an area fraction between zero and one. A FaceIndex with
zero area fraction has no flow area between the VoFs connected by the face. A face with
unity area fraction has an uncovered area equal to an uncovered cell face. Only friend
classes (EBISBox, MFIndexSpace...) may call the defining constructors. Only the null
constructor of FaceIndex should be used by users.

The important member functions of this class are:

• const FaceIndexType& faceType() const

Returns the FaceIndexType of this FaceIndex.
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• const IntVect& gridIndex(Side::LoHiSide sd) const

Return the cell of the VolIndex on the sd side of the face.

• const int& cellIndex(Side::LoHiSide sd) const

Return the cell index of the VolIndex on the sd side of the face. If the
FaceIndexType is of mfInterface, “low” and “high” are defined in the same
way as described previously. Returns -1 if that VolIndex is outside the domain of
computation.

• VolIndex getVoF(Side::LoHiSide sd) const

Get the VoF at the given side of the face. Will return a VoF with a negative cell
index if the IntVect of that VoF is outside the domain.

• bool isBoundary() const

Returns true if the face is on the boundary of the domain.

5 Data Holders for Embedded Boundary Applications

All multifluid data holders are defined on the data graph of an EBISBox. A BaseIVFAB<T>

is an array of data defined in an irregular region of space. The irregular region is specified
by the VolIndexes of an IntVectSet and the data graph of a EBISBox. Multiple data
components per VolIndex may be specified in the BaseEBIVFAB definition.

A BaseEBIFFAB<T> is an array of data defined over an irregular region of space. The
irregular region is specified by the faces of an IntVectSet within the data graph of an
EBISBox. All the faces in a BaseEBIFFAB will have the same FaceIndexType, which
is specified in the BaseEBIFFAB definition. Multiple data components per face may be
specified in the definition. BaseEBCellFAB is a templated class which holds cell-centered
data over a region which is described by a rectangular subset of a multifluid interface
in the data graph of an EBISBox. BaseEBFaceFAB is a templated class which holds
face-centered data over a similar region.

5.1 Class BaseIVFAB<T>

A BaseIVFAB<T> is a templated array of data defined over an irregular region of space.
The irregular region is specified by the VolIndexs of an IntVectSet intersected with the
data graph of an EBISBox. Multiple data components per VolIndex may be specified in
the BaseIVFAB definition. The important member functions of BaseIVFAB follow.

• BaseIVFAB(const IntVectSet& iggeom_in,

const EBISBox& a_mfisBox,

int nvarin = 1);
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Defining constructor. Specifies the valid domain in the form of an IntVectSet and
the number of data components per VoF. The contents are uninitialized.

• void setVal(T value);

Set a value everywhere. Every data location in this BaseIVFAB is set to value.

• void setVal(T value, int phase);

Set a value everywhere. Every data location in this BaseIVFAB for the given phase
is set to value.

• void copy(const Box& a_fromBox, const Interval& destInterval,

const Box& a_toBox,

const BaseIVFAB<T>& src, const Interval& srcInterval);

Copy the contents of another BaseIVFAB into this BaseIVFAB. over the specified
regions and intervals.

• int nComp() const;

Return the number of data components of this BaseIVFAB.

• T& operator() (const VolIndex& ndin, int varlocin);

Indexing operator. Return a reference to the contents of this BaseIVFAB, at the
specified VoF and data component, where varlocin may range from zero to nvar-1.
The returned object is a modifiable lvalue.

5.2 Class BaseEBCellFAB<T>

A BaseEBCellFAB<T> is a templated holder for cell-centered data over a region which
consists of the intersection of a cell-centered box and the data graph in an MFIndexSpace.
At every uncovered VoF in this intersection, the BaseEBCellFAB contains a specified num-
ber of data values. At singly valued cells, the data is stored internally in a BaseFab<T>. At
multiply-valued cells, the data is stored internally in a BaseIVFAB. BaseEBCellFAB pro-
vides indexing by VoF and access to the regular data’s pointer for passage to FORTRAN
subroutines. This class does not provide a copy constructor or assignment operator.

The important functions for the class BaseEBCellFAB is defined as follows.

• void define(const EBISBox a_mfis,const Box& a_region,

int a_nVar);

Full define function. Defines the domain of the BaseEBCellFAB to be the intersec-
tion of the input Box and the domain of the input EBISBox. Creates the space for
data at every VoF in this intersection.

• void setVal(T a_value);

Set the value of all data in the container to a_value.
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• void setVal(T a_value, int phase);

Set the value of all data for the given phase in the container to a_value.

• void copy(const Box& a_RegionFrom, const Interval& destInt,

const Box& a_RegionTo,

const BaseEBCellFAB<T>& a_srcFab,

const Interval& srcInt);

Copy the data from a_srcFab into the current BaseEBCellFAB regions and intervals
specified.

• int nComp() const;

Return the number of data components of this BaseEBCellFAB.

• T& operator()(const VolIndex& a_vof, int a_nVarLoc);

Returns the data at VoF a_vof for variable number a_nVarLoc. Returns a modi-
fiable lvalue.

• BaseFab<T>& getRegFAB();

Returns the regular data holder. This is useful so that the data can be passed to
Fortran using the BaseFab interface.

• getCellDataType(BaseFab<int>& cellTypes)

Fills a basefab¡int¿ with values indicating which type of cell is in each cell of the
BaseFab¡T¿ returned by the getRegFab function. In a regular cell, the value is the
index number of the phase occupying the cell. If the cell is an irregular cell, the
value is -1.

• const IntVectSet& getMultiCells() const;

Returns the IntVectSet of all the multiply-valued cells.

5.3 Class EBCellFAB

An EBCellFAB is a holder for cell-centered floating–point data over a region which con-
sists of the intersection of a cell-centered box and the data graph for a single phase in
an EBISBox. It is an extension of a BaseEBCellFAB<Real> which includes arithmetic
functions. At singly valued cells, the data is stored internally in a FArrayBox. At multiply-
valued cells, the data is stored internally in a BaseIVFAB<Real>. EBCellFAB provides
indexing by VoF and access to the regular data’s pointer for passage to FORTRAN subrou-
tines. This class does not provide a copy constructor or assignment operator. EBCellFAB
has all the functions of BaseEBCellFAB<Real> and the following extra functions:
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• FArrayBox& getRegFAB();

Returns the regular data holder. This is useful so that the data can be passed to
Fortran using the BaseFab interface.

• EBCellFAB& operator+=(const Real& a_valin);

EBCellFAB& operator-=(const Real& a_valin);

EBCellFAB& operator*=(const Real& a_valin);

EBCellFAB& operator/=(const Real& a_valin);

Add (or subtract or multiply or divide) a_valin to (or from or by or into) every
data value in the holder.

• EBCellFAB& operator+=(const EBCellFAB& a_fabin);

EBCellFAB& operator-=(const EBCellFAB& a_fabin);

EBCellFAB& operator*=(const EBCellFAB& a_fabin);

EBCellFAB& operator/=(const EBCellFAB& a_fabin);

Add (or subtract or multiply or divide) the internal values to (or from or by or into)
the values in fabin over the intersection of the domains of the two holders and put
the result in the current holder. It is an error if the two holders do not contain the
same number of variables or the same data graph.

5.4 Class MFCellFAB

Class MFCellFAB represents a collection of EBCellFABs for each fluid phase. It provides
limited functionality itself but does organize code design and interfaces.

• MFCellFAB(const Vector<EBISBox>& a_phaseGraphs,

const Box& a_region, const Vector<int>& a_nVar)

Constructor. a_phaseGraphs has a length equal to the number of fluid phases.
Each fluid phase is defined by it’s own EBISBox

• EBCellFAB& getPhase(int a_phase)

• int nComp(int a_phase) const

• void copy(const Box& RegionFrom,

const Interval& destInt,

const Box& RegionTo,

const MFCellFAB& source,

const Interval& srcInt);

static int preAllocatable()

int size(const Box& R, const Interval& comps) const

void linearOut(void* buf, const Box& R, const Interval& comps) const

void linearIn(void* buf, const Box& R, const Interval& comps);
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Linearization routines required by the LevelData<T> parallel data holder template
class.

5.5 Class MFCellFactory

Used to imnplement the Factory Design Pattern for our parallel data holders. This is the
technique used in Chombo to allow objects with different construction requirements to
re-use our parallel data holder and communication system.

The only critical user interface function of this class is:

• MFCellFactory(const MFIndexSpace& a_mf, const DisjointBoxLayout& a_dbl,

const Box& a_domain, const Vector<int>& a_ncomps,

int ghost);

This class is used as follows:

LevelData<MFCellFAB> state;

MFCellFactory factory(mfIndexSpace, dBoxLayout,

domain, numComps, nghost);

state.define(dBoxLayout, maxComps, nghost, factory);

5.6 Class BaseEBFaceFAB<T>

A BaseEBFaceFAB<T> is a templated holder for face-centered data over a region which
consists of the intersection of a cell-centered box and the faces of a given FaceIndexType

in the data graph of an EBISBox. At every uncovered face in this intersection, the
BaseEBFaceFAB contains a specified number of data values. At singly valued faces,
the data is stored internally in a BaseFab<T>. At multiply-valued cells, the data is
stored internally in a BaseIFFAB. BaseEBFaceFAB provides indexing by face and access
to the regular data’s pointer for passage to FORTRAN subroutines. This class does not
provide a copy constructor or assignment operator. The important functions for the class
BaseEBFaceFAB are defined as follows.

• void define(const EBISBox& a_mfis,

const Box& a_region,

FaceIndexType a_faceType,

int a_nVar,

bool interiorOnly = false);

Full define function. Defines the domain of the BaseEBFaceFAB to be the in-
tersection of the input Box and the faces of the input EBISBox for the given
FaceIndexType. Creates the space for data at every face in this intersection.
The interiorOnly argument specifies whether the data holder will span either
the surrounding faces of the set or the interior faces of the set (only relevant if
a_faceType is xFace, yFace, or zFace).
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• void setVal(T a_value);

Set the value of all data in the container to a_value.

• void setVal(T a_value, int phase);

Set the value of all data in the container which is of the given phase to a_value.

• FaceIndexType type() const;

Return the FaceIndexType of the faces of this BaseEBFaceFAB.

• T& operator()(const FaceIndex& a_face, int a_nVarLoc);

Returns the data at face a_face for variable number a_nVarLoc. Returns a mod-
ifiable lvalue.

• void copy(const Box& a_RegionFrom, const Interval& a_destInt,

const Box& a_RegionTo,

const MFFaceFAB<T>& a_source,

const Interval& a_srcInt);

Copy the data from a_source into the current BaseEBFaceFAB over regions and
intervals specified. The two MFFaceFABs must have the same FaceIndexType and
be based on the same data graph.

• BaseFab<T>& getRegFAB();

Returns the regular data holder. This is useful so that the data can be passed to
Fortran using the BaseFab interface.

• const IntVectSet& getMultiCells() const;

Returns the IntVectSet of all the multiply-valued cells.

5.7 Class EBFaceFAB

An EBFaceFAB is a holder for face-centered floating-point data over a region which con-
sists of the intersection of a face-centered box and an MFIndexSpace. It is an exten-
sion of a BaseEBFaceFAB<Real> which includes arithmetic functions. At single-valued
faces, the data is stored internally in a BaseFab<Real>. At multiply-valued faces, the
data is stored internally in a BaseIFFAB<Real>. EBFaceFAB has all the functions of
BaseEBFaceFAB<Real> and the following extra functions (note that unlike the corre-
sponding cell-centered class, there is no remap functionality provided. It is assumed that
face-centered data is transient and cannot be remapped.):

• FArrayBox& getRegFAB();

Returns the regular data holder. This is useful so that the data can be passed to
Fortran using the BaseFab interface.
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• EBFaceFAB& operator+=(const EBFaceFAB& fabin);

EBFaceFAB& operator-=(const EBFaceFAB& fabin);

EBFaceFAB& operator*=(const EBFaceFAB& fabin);

EBFaceFAB& operator/=(const EBFaceFAB& fabin);

Add (or subtract or multiply or divide) the values in a_fabin to (or from or by or
into) the internal values over the intersection of the domains of the two holders and
put the result in the current holder. It is an error if the two holders do not contain
the same number of variables. It is an error if the two holders have different face
directions.

• EBFaceFAB& operator+=(const Real& a_valin);

EBFaceFAB& operator-=(const Real& a_valin);

EBFaceFAB& operator*=(const Real& a_valin);

EBFaceFAB& operator/=(const Real& a_valin);

Add (or subtract or multiply or divide) a_valin to (or from or by or into) every
data value in the holder.

6 Data Structures for Pointwise Iteration

Like EBChombo, MFChombo contains two classes which facilitate pointwise iteration,
VoFIterator and FaceIterator. VoFIterator is used to iterate over every point
in an IntVectSet in a given phase. FaceIterator iterates over faces in an IntVectSet

of a particular FaceIndexType.

6.1 Class VoFIterator

VoFIterator iterates over every uncovered VoF in an IntVectSet inside an EBISBox. Its
important functions are as follows

• VoFIterator(const IntVectSet& a_ivs,

const EBISBox& a_mfisBox,

const int phase);

void define(const IntVectSet& a_ivs,

const EBISBox& a_mfisBox,

const int phase);

Define the VoFIterator with the input IntVectSet and the EBISBox. The
IntVectSet defines the points that will be iterated over and should be contained
within the region of EBISBox. Calls reset() after construction.

• void reset();

Rewind the iterator to its beginning.
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• void operator++();

Advance the iterator to its next VoF.

• bool ok() const;

Return true if there are more unvisited VoFs for the iterator to cover.

• const VolIndex& operator() () const;

Return the current VoF.

The following routine sets the 0th component of the data holder to a constant value at
each point in the input set.

/******************/
void setPhiToValue(EBCellFAB& a_phi,

const IntVectSet& a_ivs,
const EBISBox& a_mfisBox,
const Real& a_value)

{
int thisPhase = a_phi.phase();
VoFIterator vofit(a_ivs, a_mfisBox, thisPhase);
for(vofit.reset(); vofit.ok(); ++vofit)

{
const VolIndex& vof = vofit();
a_phi(vof) = a_value;

}
}
/******************/

The call to reset() in the above code is unnecessary in this case. One only needs to call
reset() if an iterator is used multiple times.

6.2 Class FaceIterator

The FaceIterator class is used to iterate over faces of a particular FaceIndexType
and phase in an IntVectSet. First we must define FaceStop, the enumeration class
which distinguishes which faces at which a given FaceIterator will stop if it is of the
xFace, yFace, or zFace FaceType. If the FaceIndexType is mfInterface, then the
FaceStp case has no meaning. The entirety of the FaceStop class is given below.

class FaceStop
{
public:

enum WhichFaces{Invalid=-1,
SurroundingWithBoundary=0, HiWithBoundary, LoWithBoundary,
SurroundingNoBoundary , HiNoBoundary , LoNoBoundary,
NUMTYPES};

};
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The enumeratives are described as follows:

• SurroundingWithBoundary means stop at all faces on the high and low sides of
IntVectSet cells.

• SurroundingNoBoundary means stop at all faces on the high and low sides of
IntVectSet cells, excluding faces on the domain boundary.

• LoWithBoundary means stop at all faces on the low side of IntVectSet cells.

• LoNoBoundary means stop at all faces on the low side of IntVectSet cells, exclud-
ing faces on the domain boundary.

• HiWithBoundary means stop at all faces on the high side of IntVectSet cells.

• LoNoBoundary means stop at all faces on the high side of IntVectSet cells, ex-
cluding faces on the domain boundary.

Now we may define the important interface of FaceIterator:

• FaceIterator(const IntVectSet& a_ivs,

const EBISBox& a_mfisBox,

const int a_phase,

const FaceIndexType& a_faceType,

const FaceStop::WhichFaces& a_location);

void define(const IntVectSet& a_ivs,

const EBISBox& a_mfisBox,

const int a_phase,

const FaceIndexType& a_faceType,

const FaceStop::WhichFaces& a_location);

Defining constructor.

• void reset();

Rewind the iterator to its beginning.

• void operator++();

Advance the iterator to its next face.

• bool ok() const;

Return true if there are more unvisited faces for the iterator to cover.

• const FaceIndex& operator() () const;

Return the current face.
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The following routine sets the 0th component of the data holder to a constant value at
each face in the input set, including boundary faces.

/******************/
void setFacePhiToValue(EBFaceFAB& a_phi,

const IntVectSet& a_ivs,
const EBISBox& a_mfisBox,
const Real& a_value)

{
int type = a_phi.type();
int phase = a_phi.phase();
FaceIterator faceit(a_ivs, a_mfisBox, phase, type,

FaceStop::SurroundingWithBoundary);
for(faceit.reset(); faceit.ok(); ++faceit)

{
const FaceIndex& face = faceit();
a_phi(face) = a_value;

}
}
/******************/

The call to reset() in the above code is unnecessary in this case. One only needs to call
reset() if an iterator is used multiple times.

7 Time-dependent functionality

As the fluid interface moves there is the need to be remapping the static data structures.

7.1 Class MFRemapper

Class MFRemapper handles two forms of remapping operation required for time-dependent
computations.

• void remap(const MFIndexSpace& a_sourceMF,

const LevelData<MFCellFAB>& a_source,

const MFIndexSpace& a_destMF,

LevelData<MFCellFAB>& a_dest)

Remap operation that takes an existing state data the source MFIndexSpace and
maps it too the same DisjointBoxLayout but with a new MFIndexSpace.

The new MFIndexSpace is usually the result an interface movement opera-
tion, followed by some form of LevelSet computation. At the end of this, a
new MFIndexSpace is created. The current state data needs to be mapped
into a new LevelData<MFCellFAB> based on this new MFIndexSpace. The
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DisjointBoxLayouts from a source and a dest are required to be identical.
Thus, no coarse-fine AMR operations are performed.

An important algorithmic consideration for this routine involves determining the
correct data to fill into a cell that was covered in the source MFIndexSpace but
becomes uncovered in the destination MFIndexSpace. The operation must not
transfer state data from another fluid phase. It should also be done in a manner
that preserves the order of the numerical scheme at the fluid interface. Different
schemes are currently being investigated.

• void remap(const MFIndexSpace& a_MF,

const ProblemDomain& a_domainCoar,

const ProblemDomain& a_domainFine,

const LevelData<MFCellFAB>& a_source,

const LevelData<MFCellFAB>& a_coarse,

const int& nref,

const int& nghost,

LevelData<MFCellFAB>& a_dest)

Regridding version of remapping operation. Same MFIndexSpace, same state data,
different grid configurations. This routine is usually called after a MeshRefine op-
eration. This routine does have to perform coarse-fine interpolation to initialize
new fine grid locations. nref is the integer refinement factor between this level of
refinment and the next coarser AMR level. nghost is the number of ghost cells in
the a dest that the user needs to be filled in.
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